Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Mol Biol Rep ; 51(1): 540, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642151

BACKGROUND: The MMP-9 is a known player in atherosclerosis, yet associations of the MMP-9 -1562 C/T variant (rs3918242) with various atherosclerotic phenotypes and tissue mRNA expression are still contradictory. This study aimed to investigate the MMP-9 -1562 C/T variant, its mRNA and protein expression in carotid plaque (CP) tissue, as a risk factor for CP presence and as a marker of different plaque phenotypes (hyperechoic and hypoechoic) in patients undergoing carotid endarterectomy. The MnSOD as an MMP-9 negative regulator was also studied in relation to CP phenotypes. METHODS AND RESULTS: Genotyping of 770 participants (285 controls/485 patients) was done by tetra-primer ARMS PCR. The MMP-9 mRNA expression in 88 human CP tissues was detected by TaqMan® technology. The protein levels of MMP-9 and MnSOD were assessed by Western blot analysis. The MMP-9 -1562 C/T variant was not recognized as a risk factor for plaque presence or in predisposing MMP-9 mRNA and protein levels in plaque tissue. Patients with hypoechoic plaques had significantly lower MMP-9 mRNA and protein levels than those with hyperechoic plaque (p = 0.008, p = 0.003, respectively). MnSOD protein level was significantly higher in hypoechoic plaque compared to hyperechoic (p = 0.039). MMP-9 protein expression in CP tissue was significantly affected by sex and plaque type interaction (p = 0.009). CONCLUSIONS: Considering the differences of MMP-9 mRNA and protein expression in CP tissue regarding different plaque phenotypes and the observed sex-specific effect, the role of MMP-9 in human atherosclerotic plaques should be further elucidated.


Atherosclerosis , Carotid Artery Diseases , Matrix Metalloproteinase 9 , Plaque, Atherosclerotic , Female , Humans , Male , Atherosclerosis/genetics , Carotid Arteries , Carotid Artery Diseases/genetics , Carotid Artery Diseases/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
2.
Front Physiol ; 13: 942459, 2022.
Article En | MEDLINE | ID: mdl-36213224

Increased fructose consumption has been linked with chronic inflammation and metabolic syndrome (MetS). Activation of the renin-angiotensin system (RAS) and NF-κB have been detected in MetS. Walnuts are a rich source of polyunsaturated omega-3 fatty acids (n-3 PUFA) that were suggested to exert anti-inflammatory effects related to cardio-metabolic health. We hypothesized that walnut supplementation has the capacity to revert unfavorable fructose-rich diet (FRD)-induced activation of cardiac RAS and NF-κB in male rats. Due to the lack of similar studies, we investigated the effects of walnut supplementation (6 weeks) on the expression of four RAS molecules (ACE, ACE2, AT1R, and AT2R) and NF-κB in rat heart after FRD (10% w/v, 9 weeks). In addition, we followed the changes in the n-6/n-3 PUFA ratio in the total pool of heart lipids after both treatments to elucidate the walnut effects on fatty acids in the heart. 36 animals (9 per group) participated in the experiment. FRD significantly increased the ACE protein level in the heart (p < 0.001). Walnut supplementation significantly increased the ACE2 protein level in the heart of FRD (p < 0.001). In addition, walnut supplementation showed a significant main effect on the arachidonic acid/eicosapentaenoic acid ratio (p = 0.004). Walnut supplementation significantly reduced this ratio, in comparison with both, the control group (C vs. FW, p < 0.05) and the FRD group (F vs. FW, p < 0.05). However, walnut treatment failed to revert the significant effect of fructose (p < 0.001) on the elevation of NF-κB protein level. Our results suggest a beneficial effect of walnut supplementation on ACE2 protein level and n-6/n-3 PUFA level in the heart of the animal model of MetS. Such results highlight the approach of omega-3-rich walnut supplementation in the stimulation of endogenous production of favorable molecules in the heart which could be an affordable nutritional treatment formaintenance of cardio-metabolic health.

3.
Int J Food Sci Nutr ; 73(7): 940-953, 2022 Nov.
Article En | MEDLINE | ID: mdl-35918845

Walnut consumption mostly has a positive implication for cardiovascular health. Walnut diet effects on the cardiac fatty acid (FA) metabolism of healthy rats and those with fructose diet-induced metabolic burden were analysed. Both walnuts and fructose increased CD36 transporter level and the nuclear content of some/all of Lipin 1/PPARα/PGC-1 complex partners, as well as cytosolic and nuclear FOXO1. However, fructose, independently of walnuts, increased the content of palmitic (PA), oleic, and vaccenic acid (VA), while in walnut-fed rats failed to increase palmitoleic acid (POA) level and the POA/PA ratio, as well as total MUFA content. In opposite, walnuts reduced the level of PA and VA and increased alpha-linolenic, eicosapentaenoic and docosapentaenoic acid level, regardless of fructose. In conclusion, both fructose and walnuts stimulated the uptake and oxidation of FA in the heart, but the walnuts, opposite to fructose, favourably altered cardiac FA profile in healthy and metabolically compromised rats.


Fatty Acids, Omega-3 , Juglans , Rats , Animals , Fatty Acids, Omega-3/pharmacology , Fructose , PPAR alpha , Nuts
4.
Front Public Health ; 10: 894389, 2022.
Article En | MEDLINE | ID: mdl-35712271

The COVID-19 pandemic has demonstrated the devastating impact of infectious disease outbreaks and the threat of emerging and re-emerging dangerous pathogens, independent of their origin. Natural, accidental, and deliberate disease outbreaks all need systems in place for an effective public health response. The best known international instrument in the field of public health is the WHO International Health Regulations (2005). Although the International Health Regulations are mainly focused on natural disease outbreaks, the actions to take to comply with them also contribute to biosecurity and non-proliferation. This paper examines in case of full implementation of the International Health Regulations, what other actions states should take to comply with international biosecurity instruments, including the Biological and Toxin Weapons Convention and United Nations Security Council Resolution 1540, to effectively prevent and defend against intentional biological threats. An overview of international instruments from different disciplines regarding biosecurity is presented. Furthermore, this paper clarifies the similarities between the international biosecurity instruments and addresses the additional requirements that instruments stipulate. From a detailed comparison between the instruments it can be concluded that, to adhere to all legally-binding international biosecurity instruments, specific non-proliferation and export control measures are necessary in addition to full implementation of the International Health Regulations. Additionally, an overview of non-legally binding instruments in the field of biosecurity is presented and practical implementation examples are highlighted. Compliance with legally binding instruments can be improved by precise guidance provided by non-legally binding instruments that are clear and attuned to the situation on the ground. To improve understanding of the existing international instruments, this paper aims to provide an overview of the international legal biosecurity framework to biosecurity experts, policymakers, civil servants, and practitioners. It offers possible practical applications for the politico-legal context and accommodates the enhancement of full employment of biosecurity resources for an improved multidisciplinary capacity to prevent, detect, and respond to infectious disease outbreaks.


COVID-19 , International Cooperation , Biosecurity , COVID-19/prevention & control , Humans , Pandemics , Public Health
5.
Genes (Basel) ; 14(1)2022 12 29.
Article En | MEDLINE | ID: mdl-36672849

Galectin-3 is encoded by LGALS-3, located in a unique haplotype block in Caucasians. According to the Tagger server, rs4040064, rs11628437, and rs7159490 cover 82% (r2 > 0.8) of the genetic variance of this HapBlock. Our aims were to examine the association of their haplotypes with first myocardial infarction (MI), changes in left ventricular echocardiographic parameters over time, and impact on plasma galectin-3 and LGALS-3 mRNA in peripheral blood mononuclear cells, both 6 months post-MI. The study group consisted of 546 MI patients and 323 controls. Gene expression was assessed in 92 patients and plasma galectin-3 in 189 patients. Rs4040064, rs11628437, rs7159490, and LGALS-3 mRNA expression were detected using TaqMan® technology. Plasma galectin-3 concentrations were determined by the ELISA method. We found that the TGC haplotype could have a protective effect against MI (adjusted OR 0.19 [0.05-0.72], p = 0.015) and that the GAC haplotype had significantly higher galectin-3 concentrations (48.3 [37.3-59.4] ng/mL vs. 18.9 [14.5-23.4] ng/mL, p < 0.0001), both in males and compared to the referent haplotype GGC. Higher plasma Gal-3 was also associated with higher NYHA class and systolic dysfunction. Our results suggest that variants tagging LGALS-3 HapBlock could reflect plasma Gal-3 levels 6 months post-MI and may have a potential protective effect against MI in men. Further replication, validation, and functional studies are needed.


Galectin 3 , Myocardial Infarction , Humans , Male , Galectin 3/genetics , Galectin 3/metabolism , Haplotypes , Leukocytes, Mononuclear/metabolism , Myocardial Infarction/genetics , RNA, Messenger/metabolism
6.
Front Nutr ; 8: 689055, 2021.
Article En | MEDLINE | ID: mdl-34222308

Cardiovascular disease (CVD) is associated with alterations in DNA methylation and polyunsaturated fatty acid (PUFA) profile, both modulated by dietary polyphenols. The present parallel, placebo-controlled study (part of the original clinical study registered as NCT02800967 at www.clinicaltrials.gov) aimed to determine the impact of 4-week daily consumption of polyphenol-rich Aronia melanocarpa juice (AMJ) treatment on Long Interspersed Nucleotide Element-1 (LINE-1) methylation in peripheral blood leukocytes and on plasma PUFAs, in subjects (n = 54, age range of 40.2 ± 6.7 years) at moderate CVD risk, including an increased body mass index, central obesity, high normal blood pressure, and/or dyslipidemia. The goal was also to examine whether factors known to affect DNA methylation (folate intake levels, MTHFR C677T gene variant, anthropometric and metabolic parameters) modulated the LINE-1 methylation levels upon the consumption of polyphenol-rich aronia juice. Experimental analysis of LINE-1 methylation was done by MethyLight method. MTHFR C677T genotypes were determined by the polymerase chain reaction-restriction fragment length polymorphism method, and folate intake was assessed by processing the data from the food frequency questionnaire. PUFAs were measured by gas-liquid chromatography, and serum lipid profile was determined by using Roche Diagnostics kits. The statistical analyses were performed using Statistica software package. In the comparison after vs. before the treatment period, in dyslipidemic women (n = 22), we observed significant decreases in LINE-1 methylation levels (97.54 ± 1.50 vs. 98.39 ± 0.86%, respectively; P = 0.01) and arachidonic acid/eicosapentaenoic acid ratio [29.17 ± 15.21 vs. 38.42 (25.96-89.58), respectively; P = 0.02]. The change (after vs. before treatment) in LINE-1 methylation directly correlated with the presence of MTHFR 677T allele, average daily folate intake, and the change in serum low-density lipoprotein cholesterol but inversely correlated with the change in serum triacylglycerols (R = 0.72, R 2 = 0.52, adjusted R 2 = 0.36, P = 0.03). The current results imply potential cardioprotective effects of habitual polyphenol-rich aronia juice consumption achieved through the modifications of DNA methylation pattern and PUFAs in subjects at CVD risk, which should be further confirmed. Hence, the precision nutrition-driven modulations of both DNA methylation and PUFA profile may become targets for new approaches in the prevention of CVD.

7.
Oxid Med Cell Longev ; 2021: 5543025, 2021.
Article En | MEDLINE | ID: mdl-33976753

The benefits of walnut (Juglans regia) consumption for metabolic health are known, but the molecular background underlying their putative antioxidant and anti-inflammatory/immunomodulatory effects is underexplored. We assessed that walnut supplementation (6 weeks) reverted unfavorable changes of the SIRT1/FoxO3a/MnSOD/catalase axis in the heart induced by fructose-rich diet (FRD). Intriguingly, Nox4 was increased by both FRD and walnut supplementation. FRD increased the cytosolic fraction and decreased the nuclear fraction of the uniquely elucidated ChREBP in the heart. The ChREBP nuclear fraction was decreased in control rats subjected to walnuts. In addition, walnut consumption was associated with a reduction in systolic BP in FRD and a decrease in fatty acid AA/EPA and AA/DHA ratios in plasma. In summary, the protective effect of walnut supplementation was detected in male rats following the fructose-induced decrease in antioxidative/anti-inflammatory capacity of cardiac tissue and increase in plasma predictors of low-grade inflammation. The current results provide a novel insight into the relationship between nutrients, cellular energy homeostasis, and the modulators of inflammatory/immune response in metabolic syndrome, emphasizing the heart and highlighting a track for translation into nutrition and dietary therapeutic approaches against metabolic disease.


Blood Pressure/drug effects , Catalase/drug effects , Dietary Supplements/analysis , Fatty Acids/blood , Fructose/adverse effects , Heart/drug effects , Hypertension/drug therapy , Juglans/chemistry , Sirtuin 1/drug effects , Animals , Anti-Inflammatory Agents , Humans , Rats , Rats, Wistar
8.
Eur J Pharm Sci ; 59: 20-30, 2014 Aug 01.
Article En | MEDLINE | ID: mdl-24768740

Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups resulted in liver injury. These data suggest that clozapine appears to have a higher potential to induce liver toxicity than fluoxetine.


Antidepressive Agents/adverse effects , Antipsychotic Agents/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Clozapine/adverse effects , Fluoxetine/adverse effects , Liver/drug effects , Alanine Transaminase/blood , Animals , Antidepressive Agents/pharmacology , Antipsychotic Agents/pharmacology , Aspartate Aminotransferases/blood , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Clozapine/pharmacology , Cyclooxygenase 2/metabolism , Fluoxetine/pharmacology , Glutathione/metabolism , Glutathione Transferase/metabolism , Liver/metabolism , Liver/pathology , Male , Malondialdehyde/metabolism , NF-kappa B/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Superoxide Dismutase
9.
Mol Cell Biochem ; 393(1-2): 43-57, 2014 Aug.
Article En | MEDLINE | ID: mdl-24671494

Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.


Hippocampus/metabolism , Oxidative Stress , Prefrontal Cortex/metabolism , Stress, Psychological , Animals , Corticosterone/blood , Cyclooxygenase 2/blood , Glutathione/blood , Hippocampus/pathology , NF-kappa B/blood , Nitric Oxide/blood , Prefrontal Cortex/pathology , Rats , Rats, Wistar , Social Isolation/psychology , Superoxide Dismutase
...